

Calculation Policy

<u>AIMS</u>

- To ensure consistency and progression in our approach to calculation and enable a smooth transition between year groups.
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations.
- To ensure that children can use these methods accurately with confidence and understanding.
- · To ensure pupils understand important concepts and make connections within mathematics.
- · To ensure pupils show high levels of fluency in performing written and mental calculations.
- To ensure that pupils are ready for the next stage of learning and have been given strong foundations in mental methods, the use of practical equipment, allowed to explore jottings in a range of forms and then to move onto more formal recording using a strong knowledge of place value, number lines labelled or blank, partitioning before eventually using compact written methods.
- To ensure that pupils are competent in fluency, reasoning and problem solving and can make informed and appropriate choices about the methods they wish to use (mental or written) to solve mathematical problems efficiently and effectively.

OVERVIEW

This policy is set out in subjects: addition, subtraction, multiplication and division. Within each specific area there is a progression of skills, knowledge and layout for written methods. The calculation strategies which will be used will reflect the ideology of moving from concrete to pictorial and then abstract recording leading to more formal written methods. Mental methods and strategies will work in partnership with these methods. A variety of mental calculation methods will be taught and that recall of facts will be taught in school. Every half term a Key Instant Recall Facts (KIRFs) task will be sent home to further embed fluency. The progression of mental and written methods and expectations will comply with the National Curriculum statements 2014. This policy will sit alongside our Maths policy.

Progression in Calculations

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part-whole model	Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a	4 + 3 = 7 10= 6 + 4 5 Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on the smaller number 1 by 1 to find the	12 + 5 = 17 	5 + 12 = 17
	answer.	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	Place the larger number in your head and count on the

			smaller number to find your answer.
Regrouping to make 10.	6 + 5 = 11	Use pictures or a number line. Regroup or partition the smaller number to make 10.	7 + 4= 11 If I have seven marbles, how many more do I need to make 10. How many more do I add on now?
	Start with the bigger number and use the smaller number to make 10.	9 + 5 = 14 1 4 +1 1 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	
Adding three single digits making a 10.	4 + 7 + 6= 17 Put 4 and 6 together to make 10. Add on 7.		4+7+6=10+7 $=17$ Combine the two numbers that make 10 and then add on the remainder.
	Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	

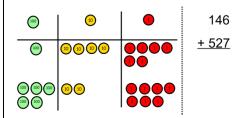
Column method- no regrouping

24 + 15 =

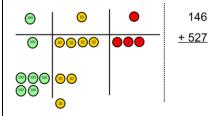
Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.

т	0		
		<u>(10)</u>	0
		10 (10 (10	0000
		10	0000

After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.

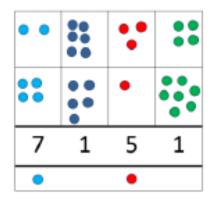

Т	0

21 + 42 = 60+3


21 +42

Column methodregrouping

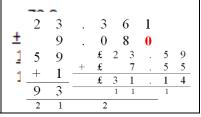
Make both numbers on a place value grid.


Add up the units and exchange 10 ones for one 10.

Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.

This can also be done with Base 10 to help children clearly see that 10 ones

Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.



Start by partitioning the numbers before moving on to clearly show the exchange below the addition.

$$\begin{array}{cccc}
20 & + & 5 \\
40 & + & 8 \\
60 & + & 13 & = 73
\end{array}$$

As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here. $\frac{+85}{621}$

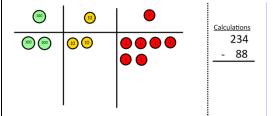
536

equal 1 ten and 10 tens equal 100.	
As children move on to decimals, money and decimal place value counters can be used to support learning.	

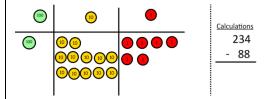
Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken	Cross out drawn objects to show what has been taken away.	18 -3= 15
	away. $6-2=4$	$ \begin{array}{cccc} \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} \\ \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} \\ \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} & \stackrel{\uparrow}{\wedge} \\ 15 - 3 = \boxed{12} \end{array} $	8 - 2 = 6
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones.	Count back on a number line or number track 9 10 11 12 13 14 15 Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Find the difference	Use counters and move them away from the group as you take them away counting backwards as you go. Compare amounts and objects to find the difference.	This can progress all the way to counting back using two 2 digit numbers. Count on to find the	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between
	Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	the number of sandwiches.
Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? 10 - 6 =	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part whole model.


	1	T	1
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	13 - 7 = 6 Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	16 – 8= How many do we take off to reach the next 10? How many do we have left to take off?
Column method without regrouping	Show how you partition numbers to subtract. Again make the larger number first. Use Base 10 to make the bigger number then take the smaller number away.	Draw the Base 10 or place value counters alongside the written calculation to help to show working. Calculations 176 - 64 = 176 - 64 112	$47-24=23$ $-\frac{40+7}{20+3}$ This will lead to a clear written column subtraction. 32 $-\frac{12}{20}$
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	71 - 45 =

100	10	•	<u>Calculations</u>
100 100	10 10 10	000	234 - 88


Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.

100	10	•	<u>Calculations</u>
100 100	10 10		234
			- 88

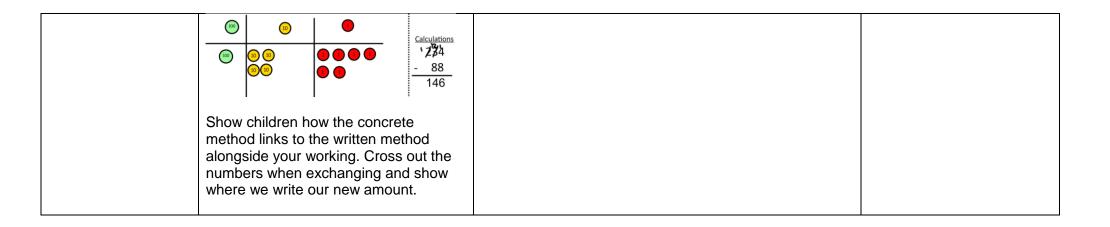
Now I can subtract my ones.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

When confident, children can find their own way to record the exchange/regrouping.

Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.


Child ren can

start their formal written method by partitioning the number into clear place value columns.

Moving forward the children use a more compact method.

This will lead to an understanding of subtracting any number including decimals.

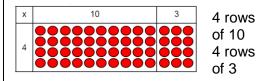
Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number. double 4 is 8 $4 \times 2 = 8$	Draw pictures to show how to double a number. Double 4 is 8	16 10 6 12 20 12 Partition a number and then double each part before recombining it back together.

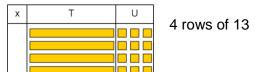
Count in multiples of a Counting in number aloud. multiples Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25, 30 Use a number line or pictures to continue support in counting in multiples. Count in multiples supported by concrete objects in equal groups. Repeated There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? Write addition sentences to addition describe objects and pictures. 2 add 2 add 2 equals 6 Use different objects to add 5 + 5 + 5 = 15equal groups. Draw arrays in different rotations Use an array to write Create arrays using counters/ cubes to Arraysshow multiplication sentences. to find commutative multiplication sentences and showing 0000 4×2=8 multiplication sentences. reinforce repeated addition. 0000 commutative $2 \times 4 = 8$ multiplication 00000 2 × 4 = 8 00 00 00000 00 $4 \times 2 = 8$

5 + 5 + 5 = 15

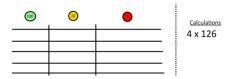
 $3 \times 5 = 15$


3 + 3 + 3 + 3 + 3 = 15

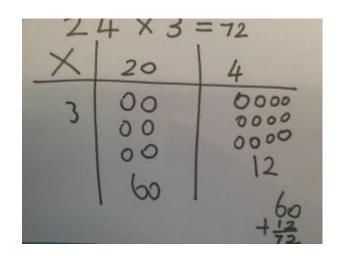
Link arrays to area of rectangles.



Grid Method


Show the link with arrays to first introduce the grid method.

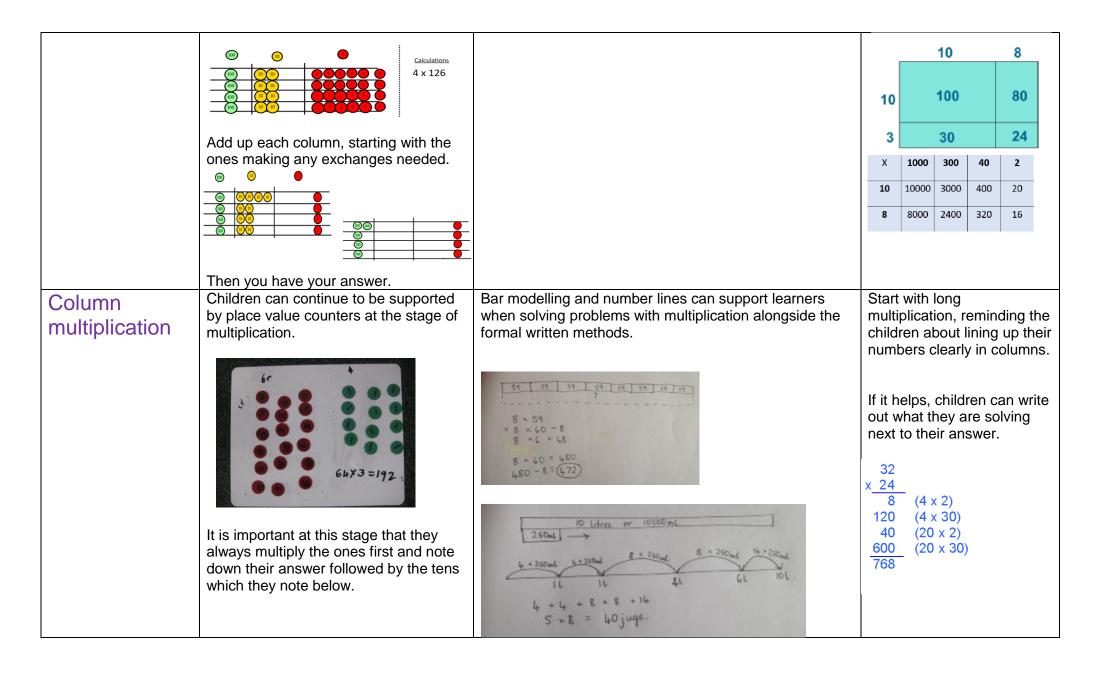
Move on to using Base 10 to move towards a more compact method.


Move on to place value counters to show how we are finding groups of a number.We are multiplying by 4 so we need 4 rows.

Fill each row with 126.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

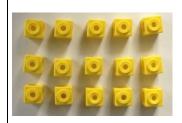


Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

×	30	5
7	210	35

$$210 + 35 = 245$$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.



	the	1 3 4 2 x 1 8 1 3 4 2 0 1 0 7 3 6 2 4 1 5 6
	me	24156

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2 = 4$	Share 9 buns between three people. $9 \div 3 = 3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. 0 1 2 3 4 5 6 7 8 9 10 11 12	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?
	96 ÷ 3 = 32	Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	
		20 ? 20 ÷ 5 = ? 5 x ? = 20	

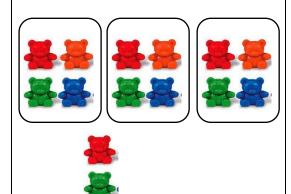

Division within arrays

Link division to multiplication by creating an array and thinking about the

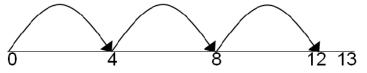
number sentences that can be created.

Eg $15 \div 3 = 5$	$5 \times 3 = 15$
$15 \div 5 = 3$	$3 \times 5 = 15$

Draw an array and use lines to split the array into groups to make multiplication and division sentences.


Find the inverse of multiplication and division sentences by creating four linking number sentences.

 $7 \times 4 = 28$ $4 \times 7 = 28$ $28 \div 7 = 4$ $28 \div 4 = 7$

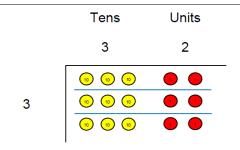

Division with a remainder

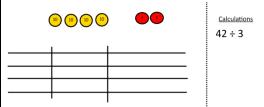
 $14 \div 3 =$

Divide objects between groups and see how much is left over

Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.

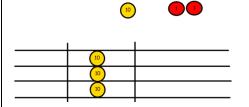
Draw dots and group them to divide an amount and clearly show a remainder.



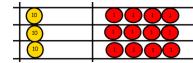


Complete written divisions and show the remainder using r.

Short division

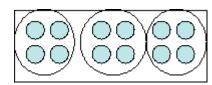


Use place value counters to divide using the bus stop method alongside

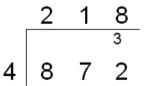


 $42 \div 3 =$

Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.



We exchange this ten for ten ones and then share the ones equally among the groups.


We look how much in 1 group so the answer is 14.

Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups.

Encourage them to move towards counting in multiples to divide more efficiently.

Begin with divisions that divide equally with no remainder.

Move onto divisions with a remainder.

Finally move into decimal places to divide the total accurately.